Civilian air flight continues on a growth curve, as more and more people utilize air travel to meet business and personal travel needs: This consumer-driven demand has resulted in the adoption of new methods to increase air system capacity and to make the air transportation system increasingly more efficient. As a consequence, civilian aviation, as an industry, has assumed a leading role in the use of automated systems, and, by implication, in the understanding of how human openers interact with these systems. Aeronautical automation systems serve a variety of roles. These include controlling aircraft and aiding, advising and monitoring numerous functions in the aircraft/airspace system. Experiences in the use of human/automation systems gathered from aviation are, in many cases, generalizable to other industries having similar requirements for human and non-human intelligent system interaction. However, the human/automation lessons learned from aviation have special relevance to the space application, where many of the same operational demands prevail. The application of aeronautical lessons of human-automated interaction to spaceflight is the subject of this paper. The discussion will address: the progress that has been made through aeronautically-based research and experience in understanding human/automation interaction, ways that this understanding can be applied to the needs of space, and the limits of our present understanding of human/automations systems. Suggestions will be offered related to human-automation research generally, and to the particular needs of the space endeavor.
From Aeronautics to Space: Lessons in Human Automation
AIAA/Space Programs and Technology ; 1996 ; Huntsville, AL, United States
1996-01-01
Preprint
No indication
English
Contextual Inquiry in HCI: Lessons from Aeronautics
British Library Conference Proceedings | 2002
|