The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the nominal impact target zone. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included the timing and duration of the maneuvers, propellant management, post-maneuver state determination, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired impact target zone in the event of contingencies. This paper presents the initial re-entry trajectory design and traces the evolution of that design into the maneuver sequence used for the re-entry. The paper also discusses the spacecraft systems and operational constraints imposed on the trajectory design and the required modifications to the initial design based on those constraints. Data from the reentry operation are also presented.
Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry
2001-06-01
Conference paper
No indication
English
Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry (AAS 01-075)
British Library Conference Proceedings | 2001
|