Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also discussed. In addition, architecture of a complete end-to-end candidate flight system that provides navigation with highly autonomous control using data from GPS is presented.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation


    Contributors:

    Publication date :

    1998-01-01


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English