The interactions of lightweight flexible airframe structures, steady and unsteady aerodynamics, and wide-bandwidth active controls on modern airplanes lead to considerable multidisciplinary design challenges. More than 25 years of mathematical and numerical methods' development, numerous basic research studies, simulations and wind-tunnel tests of simple models, wind-tunnel tests of complex models of real airplanes, as well as flight tests of actively controlled airplanes, have all contributed to the accumulation of a substantial body of knowledge in the area of aeroservoelasticity. A number of analysis codes, with the capabilities to model real airplane systems under the assumptions of linearity, have been developed. Many tests have been conducted, and results were correlated with analytical predictions. A selective sample of references covering aeroservoelastic testing programs from the 1960s to the early 1980s, as well as more recent wind-tunnel test programs of real or realistic configurations, are included in the References section of this paper. An examination of references 20-29 will reveal that in the course of development (or later modification), of almost every modern airplane with a high authority active control system, there arose a need to face aeroservoelastic problems and aeroservoelastic design challenges.
Integrated Aeroservoelastic Optimization: Status and Direction
Structures, Structural Dynamics, and Materials ; 1997 ; Kissimmee, FL, United States
Journal of Aircraft ; 36 , 1
1999-02-01
Miscellaneous
No indication
English