The take-off distances over a 35-foot obstacle have been determined for a supersonic transport configuration characterized by a low maximum lift coefficient at a high angle of attack and by high drag due to lift. These distances were determined analytically by means of an electronic digital computer. The effects of rotation speed, rotation angle, and rotation time were determined. A few configuration changes were made to determine the effects of thrust-weight ratio, wing loading, maximum lift coefficient, and induced drag on the take-off distance. The required runway lengths based on Special Civil Air Regulation No. SR-422B were determined for various values of rotation speed and compared with those based on full engine power. Increasing or decreasing the rotation speed as much as 5 knots from the value at which the minimum take-off distance occurred increased the distance only slightly more than 1 percent for the configuration studied. Under-rotation by 1 deg to 1.5 deg increased the take-off distance by 9 to 15 percent. Increasing the time required for rotation from 3 to 5 seconds had a rather small effect on the take-off distance when the values of rotation speed were near the values which result in the shortest take-off distance. When the runway length is based on full engine power rather than on SR-422B, the rotation speed which results in the shortest required runway length is 10 knots lower and the runway length is 4.3 percent less.
Take-off Distances of a Supersonic Transport Configuration as Affected by Airplane Rotation During the Take-off Run
1961-10-01
Miscellaneous
No indication
English
Engineering Index Backfile | 1961
|Airplane safe take,-off rotation indicator with headwind calculation
Emerald Group Publishing | 2002
Airplane safe take-off rotation indicator with headwind calculation
Emerald Group Publishing | 2002