In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design optimization strategies for specified vibratory stresses and increased fatigue life prediction of assembly components, and for specified frequency margins on the Campbell diagrams of turbomachines. Finally, we will integrate the developed codes with NASA's turbomachinery aeromechanics prediction capability (such as NASA FREPS).


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies


    Contributors:

    Publication date :

    1997-01-01


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English




    FORCED RESPONSE OF MISTUNED BLADED DISK ASSEMBLIES

    WATSON, BRIAN / KAMAT, MANOHAR / MURTHY, DURBHA | AIAA | 1993





    Vibration and flutter of mistuned bladed-disk assemblies

    Kaza, K. R. V. / Kielb, R. E. | NTRS | 1985