The objective of this study is to develop an anlysis to predict buckling loads of ring-stiffened anisotropic cylinders subject to axial compression, torsion, and internal pressure. This structure is modeled as a branched shell. A nonlinear axisymmetric prebuckling equilibrium state is assumed which is amenable to an exact solution within each branch. Axisymmetric geometric imperfections are included. Buckling displacements are represented by a Fourier series in the circumferential coordination and the finite-element method in the axial coordinate. Application of the Trefftz criterion to the second variation of the total potential energy leads to a nonlinear eigenvalue problem for the buckling load and mode. Results are presented for both unstiffened and ring-stiffened cylinders in the form of buckling interaction diagrams. Imperfections can cause an unexpected buckling mode in the ring web which would not occur for the perfect structure, and pressurization diminishes the benefit of adding rings to the unstiffened shell to increase the buckling load. The implementation of the analysis methodology into a structural sizing algorithm is discussed.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Buckling of imperfect, anisotropic, ring-stiffened cylinders under combined loads


    Contributors:

    Published in:

    Publication date :

    1994-06-01



    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English