For any round-trip Mars mission, the selection of a parking orbit at Mars must consider the precession caused by the oblateness of the planet. This precession will affect the departure condition for Earth return and, therefore, the initial mass required in low Earth orbit (LEO). In this investigation, which considers precession effects, minimum initial LEO masses were obtained for parking orbits characterized by having near-equatorial inclinations, high eccentricities, and three-dimensional departure burns (i.e., a burn with an in-plane and an out-of-plane velocity increment component). However, because near-equatorial inclination orbits have poor planetary coverage characteristics, they are not desirable from a science viewpoint. To enhance the potential for satisfying science requirements along with landing site accessibility, a penalty in the initial LEO mass is required. This study shows that there are a set of orbits characterized by low to moderate essentricities (e = 0.2 to 0.5) and nonequatorial inclinations (i = 70 to 140 deg) that reduce this initial LEO mass penalty. Therefore, careful selection of a parking orbit at Mars can enhance the potential for satisfying science requirements with minimal mass penalties.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Aspects of parking orbit selection in a manned Mars mission


    Contributors:

    Publication date :

    1992-12-01


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English


    Keywords :