Two algorithms processing polarimetric synthetic-aperture-radar data found effective in assigning various parts of SAR images to classes representing different types of terrain. Partially automate interpretation of SAR imagery, reducing amount of photointerpretation needed and putting whole interpretation process on more quantitative and systematic basis. First algorithm implements Bayesian classification scheme "supervised" by use of training data. Second algorithm implements classification procedure unsupervised.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Classification Of Terrain In Polarimetric SAR Images


    Contributors:

    Published in:

    Publication date :

    1993-03-01



    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English




    Terrain Classification in Central Navarre (Spain) Using Polarimetric Radar Images

    Larranaga, A. / Alvarez-Mozos, J. / Albizua, L. et al. | British Library Conference Proceedings | 2009


    Polarimetric Decomposition Applied to 3D SAR Images of Forested Terrain

    Sauer, Stefan / Kugler, Florian / Lee, Seung-Kuk et al. | German Aerospace Center (DLR) | 2010

    Free access

    Statistical blind classification of terrain surfaces in SAR images

    Mata-Moya, D. / de Nicolas-Presa, J. M. / Jarabo-Amores, P. et al. | IEEE | 2011



    The Impact of Temporal Decorrelation over Forest Terrain in Polarimetric SAR Interferometry

    Lee, S.-K. / Kugler, F. / Hajnsek, I. et al. | British Library Conference Proceedings | 2009