Models of the TOPEX/Poseidon spacecraft are developed by means of finite-element analyses for use in generating acceleration histories for various orbit orientations which account for nonconservative radiation forces. The acceleration profiles are developed with an analysis based on the use of the 'box-wing' model in which the satellite is modeled as a combination of flat plates. The models account for the effects of solar, earth-albedo, earth-IR, and spacecraft-thermal radiation. The finite-element analysis gives the total force and induced accelerations acting on the satellite. The plate types used in the analysis have parameters that can be adjusted to optimize model performance according to the micromodel analysis and tracking observations. Acceleration related to solar radiation pressure is modeled effectively, and the techniques are shown to be useful for the precise orbit determinations required for spacecraft such as the TOPEX/Poseidon.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Modeling radiation forces acting on satellites for precision orbit determination


    Contributors:

    Conference:

    AAS/AIAA Astrodynamics Conference ; 1991 ; Durango, CO, United States


    Publication date :

    1992-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English








    Precision Orbit Determination of Altimetric Satellites

    Shum, C. K. / Ries, J. C. / Tapley, B. D. et al. | British Library Conference Proceedings | 1994