The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Flutter suppression for the Active Flexible Wing - Control system design and experimental validation


    Contributors:

    Conference:

    AIAA Dynamics Specialists Conference ; 1992 ; Dallas, TX, United States


    Publication date :

    1992-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English