Recent interest in airbreathing hypersonic flight has centered around the need to develop advanced space launch systems which can reduce the cost of inserting payloads in orbit and make space more accessible. An effect of the thermal environment is to require the vehicle to operate at high altitudes, in very thin air, to maintain aircraft structural load limits. The high altitudes at which the hypersonic vehicle must operate give rise to the concept of an airframe integrated propulsion system to provide a much larger inlet and nozzle to process the required volume of air at low density, atmospheric conditions. In the integrated system, the forward portion of the vehicle compresses the air flow and serves as the external portion of the inlet; the aftbody completes the expansion process for the nozzle. In addition, the engine, which is contained between the body and the forebody shock wave, lends itself to a modular integration of a number of separate engines. In this manner, a relatively small engine can be defined to allow engine development in existing ground facilities.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Hypersonic airbreathing propulsion/airframe integration


    Contributors:


    Publication date :

    1992-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English






    Hypersonic airbreathing propulsion

    Avery, W.H. / Dugger, G.L. | Engineering Index Backfile | 1964