The boundary layer stability within the high-area-ratio nozzle at NASA Lewis was tested at five chamber pressure conditions. For all nozzle conditions examined, Taylor-Goertler vortices grew more rapidly than Tollmien-Schlichting waves. The experimental heat flux was accurately predicted by a laminar boundary layer computation, thereby confirming the laminar nature of the nozzle boundary layer flow. When the chamber pressure was increased in a series of cases, the transition point occurred farther upstream. The number of vortices contained in the dominant instability increased with chamber pressure.
A numerical investigation of supersonic nozzle boundary layer transition
1991-09-01
Conference paper
No indication
English