The theoretical basis of flexible-aircraft modeling techniques encompassing aerodynamic, control, and elastic-structure effects is investigated analytically, with a focus on methods which employ minimum-state approximations for the unsteady aerodynamics. Rational-function approximations to generalized aerodynamic forces are reviewed; constraints and lag-coefficient optimization are explained; the problem of physical weighting in the minimum-state equations of motion is examined; and results of typical analyses from the NASA Active Flexible Wing project (Perry et al., 1988) are presented in extensive tables and graphs and discussed in detail. The minimum-state approach is shown to produce accurate models at significantly reduced computation costs.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics


    Contributors:

    Conference:

    AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference ; 1989 ; Mobile, AL, United States


    Publication date :

    1989-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English