The use of robots in the future must go beyond present applications and will depend on the ability of a robot to adapt to a changing environment and to deal with unexpected scenarios (i.e., picking up parts that are not exactly where they were expected to be). The objective of this research is to demonstrate the feasibility of incorporating high level planning into a robot enabling it to deal with anomalous situations in order to minimize the need for constant human instruction. The heuristics can be used by a robot to apply information about previous actions towards accomplishing future objectives more efficiently. The system uses a decision network that represents the plan for accomplishing a task. This enables the robot to modify its plan based on results of previous actions. The system serves as a method for minimizing the need for constant human instruction in telerobotics. This paper describes the integration of expert systems and simulation as a valuable tool that goes far beyond this project. Simulation can be expected to be used increasingly as both hardware and software improve. Similarly, the ability to merge an expert system with simulation means that we can add intelligence to the system. A malfunctioning space satellite is described. The expert system uses a series of heuristics in order to guide the robot to the proper location. This is part of task level planning. The final part of the paper suggests directions for future research. Having shown the feasibility of an expert system embedded in a simulation, the paper then discusses how the system can be integrated with the MSFC graphics system.
Integration of task level planning and diagnosis for an intelligent robot
1988-10-01
Conference paper
No indication
English
British Library Online Contents | 1997
|Preference Planning: A Reactive Approach to Robot Task Planning
British Library Conference Proceedings | 1993
|