The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher workloads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) is developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with airplane status information during the diagnostic process. The simulator is based on the Lockheed Advanced Concept System (ACS), a future generation airplane, and on the Boeing 737. A distinction between two types of faults, maladjustments and malfunctions, has led to two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to access abnormal situations during airplane flight. Malfunctions and maladjustments are handled separately, diagnosed using domain knowledge.
A flight expert system (FLES) for on-board fault monitoring and diagnosis
1987-07-01
Conference paper
No indication
English
Sensor-based fault diagnosis in a flight expert system
NTRS | 1985
|Vehicle fault diagnosis expert system
SPIE | 2024
|Complex system monitoring and fault diagnosis using communicating expert systems
Tema Archive | 1986
|