The capability to replenish spacecraft, satellites, and laboratories on-orbit with consumable fluids provides significant increases in their cost and operational effectiveness. Tanker systems to perform on-orbit fluid resupply must be flexible enough to operate from the Space Transportation System (STS), Space Station, or the Orbital Maneuvering Vehicle (OMV), and to accommodate launch from both the Shuttle and Expendable Launch Vehicles (ELV's). Resupply systems for storable monopropellant hydrazine and bipropellants, and water have been developed. These studies have concluded that designing tankers capable of launch on both the Shuttle and ELV's was feasible and desirable. Design modifications and interfaces for an ELV launch of the tanker systems were identified. Additionally, it was determined that modularization of the tanker subsystems was necessary to provide the most versatile tanker and most efficient approach for use at the Space Station. The need to develop an automatic umbilical mating mechanism, capable of performing both docking and coupler mating functions was identified. Preliminary requirements for such a mechanism were defined. The study resulted in a modular tanker capable of resupplying monopropellants, bipropellants, and water with a single design.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Orbital spacecraft consumables resupply


    Contributors:

    Publication date :

    1988-07-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English