Observations of the plasma waves associated with collisionless shocks are reviewed, and the understanding of their generation mechanisms and their importance to shock physics are summarized. The emphasis is on waves generated directly at the shock, especially ion acoustic and lower-hybrid-like modes. The observations are discussed in the context of shock structure, with attention given to the distinctions between waves generated in the shock foot and ramp. The behavior of resistive, dispersive, and supercritical quasi-perpendicular shocks is contrasted. Evidence for the operation of various generation mechanisms, including interactions with cross-field currents, gyrating reflected ions, and field-aligned electron beams, are summarized. The various forms of plasma heating which are actually observed are outlined, and the role of the various wave modes in this heating is discussed. Conclusion, it is argued that, while plasma wave turbulence may play a vital role in plasma heating for some special shocks, it is of second-order importance in most cases.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Plasma wave signatures of collisionless shocks and the role of plasma wave turbulence in shock formation


    Contributors:

    Published in:

    Publication date :

    1986-01-01



    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English


    Keywords :