A theoretical and experimental investigation was conducted of the subsonic maneuver capability of a fighter wing concept designed for supersonic cruise. To improve the subsonic maneuver capability, the wing utilized full-span leading- and trailing-edge flaps that were designed with the aid of a subsonic-analysis computer program. Wind-tunnel tests were made at Mach numbers of 0.3, 0.5, and 0.7. Force and moment data obtained were compared with theoretical predictions of Mach 0.5 from two subsonic-analysis computer programs. The two theoretical programs gave a good prediction of the lift and drag characteristics but only a fair prediction of the pitching moment. The experimental results of this study show that with the proper combination of leading- and trailing-edge flap deflections, a suction parameter of nearly 90 percent can be attained at a Mach number of 0.5 and a lift coefficient of 0.73; this is a three-fold improvement from 30 percent for the basic wing.
Subsonic maneuver capability of a supersonic cruise fighter wing concept
1987-01-01
Report
No indication
English
Design study results of a supersonic cruise fighter wing
AIAA | 1979
|Design study results of a supersonic cruise fighter wing
NTRS | 1979
|