Investigation of the accuracy attainable in automatic land use classification using 13 bands of multispectral data from the Skylab S-192 scanner. Classification to levels containing seven urban classes, five agricultural, and three water classes is shown to be achievable. With 17 classes, a classification accuracy of 72% was obtained. A wide spectral range, including the thermal band, appears to be most useful for distinguishing urban classes. Agricultural and water classes can be separated using spectral bands covering the visible to far IR.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Automatic land use classification using Skylab S-192 multispectral data


    Contributors:
    Kirvida, L. (author) / Cheung, M. (author)

    Conference:

    American Institute of Aeronautics and Astronautics and American Geophysical Union, Conference on Scientific Experiments of Skylab ; 1974 ; Huntsville, AL


    Publication date :

    1974-10-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English






    Detection of saline soils with Skylab multispectral scanner data

    Richardson, A. J. / Gerbermann, A. H. / Gausman, H. W. et al. | NTRS | 1976


    Automatic Land Use Classification using Skylabs-192 Multispectral Data

    Wu, Shi-Tsan / Stuhlinger, Ernst / Kent, Marion I. | AIAA | 1976