A numerical procedure permitting the rapid determination of the internal performance of a class of scramjet nozzle configurations is presented. The approach developed is based on the construction of quasi two dimensional simple wave networks, where lateral expansion effects are incorporated by one dimensional approximations. A numerical procedure following this approach has has been developed and results obtained are highly comparable to those obtained employing a characteristic procedure. The numerical program developed permits the parametric variation of cowl length, turning angles on the cowl and vehicle undersurface and lateral expansion and is subject to fixed constraints such as the vehicle length and nozzle exit height. The program requires uniform initial conditions at the burner exit station and yields the location of all predominant wave zones, accounting for lateral expansion effects. In addition, the program yields the detailed pressure distribution on the cowl and vehicle undersurface and calculates the nozzle thrust, lift and pitching moment.
A numerical procedure for the parametric optimization of three dimensional scramjet nozzles
1973-10-01
Report
No indication
English
Numerical simulation on infrared radiation characteristics of scramjet nozzles
Online Contents | 2013
|Off-Design Performance of Scramjet Nozzles
British Library Conference Proceedings | 1993
|