Designs of aircraft structures have been moving toward leaner, lightweight designs for increased fuel efficiency. The Passive Aeroelastic Tailored (PAT) wing developed under the NASA Advanced Air Transport Technology (AATT) project is an example of a swept-wing design with high aspect ratio that incorporates lightweight highly-flexible tailored composite construction. The passive aeroelastic tailored structural design has explored the design space to enable aeroelastically tailored wing structures to increase aspect ratios (from 9 to 14) and ultimately reduce weight by 20 percent to 25 percent without impacting aeroelastic performance. To further study the aeroelastic performance of such a wing, the NASA Armstrong Flight Research Center (AFRC) (Edwards, California) has developed efficient real-time structural algorithms that are used in conjunction with a fiber-optic measurement system for lightweight vehicle applications. The AFRC Fiber Optic Sensing System (FOSS) provides up to 8,000 distributed surface strain measurements at one-half-inch increments and can be used to estimate a variety of structural parameters such as shape and load. This report discusses the implementation of strain-based displacement and twist-sensing techniques applied to the PAT wing test article tested at the NASA AFRC Flight Loads Laboratory. Empirical FOSS strain data are collected under varying loading conditions. Strain data are processed with the displacement and twist-sensing algorithms and independently verified by comparison to conventional ground-based instrumentation.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Fiber-Optic Strain-Based Deflection and Twist Sensing for a High-Aspect-Ratio Swept Wing


    Contributors:
    F. Pena (author)

    Publication date :

    2020


    Size :

    27 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English