Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Design of a Lunar Propellant Processing Facility. NASA/USRA Advanced Program


    Contributors:
    R. Batra (author) / J. Bell (author) / J. M. Campbell (author) / T. Cash (author) / J. Collins (author)

    Publication date :

    1993


    Size :

    313 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English