With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.
Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes
2016
12 pages
Report
No indication
English
Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes (AIAA 2016-4376)
British Library Conference Proceedings | 2016
|Sense and Avoid. Operator Separation of Unmanned Aircraft in Conflict Trajectories
Tema Archive | 2014
|