A two-dimensional, two-temperature, single fluid MHD code was used to predict the performance of cylindrical, self-field magnetoplasmadynamic (MPD) thrusters operated with argon, lithium, and hydrogen propellants. A thruster stability equation was determined relating maximum stable J(sup 2)/m values to cylindrical thruster geometry and propellant species. The maximum value of J(sup 2)/m was found to scale as the inverse of the propellant molecular weight to the 0.57 power, in rough agreement with limited experimental data which scales as the inverse square root of the propellant molecular weight. A general equation which relates total thrust to electromagnetic thrust, propellant molecular weight, and J(sup 2)/m was determined using reported thrust values for argon and hydrogen and calculated thrust values for lithium. In addition to argon, lithium, and hydrogen, the equation accurately predicted thrust for ammonia at sufficiently high J(sup 2)/m values. A simple algorithm is suggested to aid in the preliminary design of cylindrical, self-field MPD thrusters. A brief example is presented to illustrate the use of the algorithm in the design of a low power MPD thruster.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Numerical Simulation of Cylindrical, Self-Field MPD Thrusters with Multiple Propellants


    Contributors:

    Publication date :

    1994


    Size :

    21 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English