Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Mitigating Overfitting in Interpretable Machine Learning Using Bayesian Methods


    Contributors:
    N. Strauss (author) / H. Oh (author) / G. Bomarito (author) / P. Leser (author) / J. Hochhalter (author) / J. Emery (author) / J. Robbins (author)

    Publication date :

    2023


    Size :

    22 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English




    Mitigating Overfitting in Interpretable Machine Learning Using Bayesian Methods

    Nolan Strauss / Hongsup Oh / Geoffrey Bomarito et al. | NTRS


    Overfitting Prevention in Accident Prediction Models: Bayesian Regularization of Artificial Neural Networks

    Fiorentini, Nicholas / Pellegrini, Diletta / Losa, Massimo | Transportation Research Record | 2022


    Teaching freight mode choice models new tricks using interpretable machine learning methods

    Xiaodan Xu / Hung-Chia Yang / Kyungsoo Jeong et al. | DOAJ | 2024

    Free access

    Symmetrization and overfitting in probabilistic latent semantic analysis

    Leksin, V. A. | British Library Online Contents | 2009


    Data-Driven Interpretable Machine Learning Methods for the Prediction of Ship Energy Consumption

    Hu, Zhihui / Fan, Ailong / Li, Jiale et al. | Springer Verlag | 2025