To meet the high contrast requirement of 1 × 10[superscript −10] to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors are a key element of these systems that correct for optical imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. However, high-actuator-count MEMS deformable mirrors have yet to fly in space long enough to characterize their on-orbit performance and reduce risk by developing and operating their supporting systems. The goal of the MEMS Deformable Mirror CubeSat Testbed is to develop a CubeSat-scale demonstration of MEMS deformable mirror and wavefront sensing technology. In this paper, we consider two approaches for a MEMS deformable mirror technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: 1) a Michelson interferometer and 2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload lab prototypes and their utility in defining mission requirements.
MEMS deformable mirror CubeSat testbed
2013
Cahoy, Kerri L., Anne D. Marinan, Benjamin Novak, Caitlin Kerr, Tam Nguyen, Matthew Webber, Grant Falkenburg, et al. “MEMS Deformable Mirror CubeSat Testbed.” Edited by Stuart Shaklan. Proc. SPIE 8864, Techniques and Instrumentation for Detection of Exoplanets VI (September 26, 2013). © 2013 SPIE
Article (Journal)
Electronic Resource
English
CubeSat Deformable Mirror Demonstration Mission
IEEE | 2014
|CubeSat Deformable Mirror Demonstration mission (DeMi)
IEEE | 2013
|Payload characterization for CubeSat demonstration of MEMS deformable mirrors
DSpace@MIT | 2014
|Operations Update for the Deformable Mirror Demonstration Mission (DeMi) CubeSat
British Library Conference Proceedings | 2021
|