In recent years, advanced driver assistance systems (ADASs) have been used to improve the safety of vehicles by either providing additional information to the driver or by taking over complete control. The majority of ADASs currently being utilised run entirely on the vehicle, only having access to information provided by the sensors that are onboard the vehicle itself. Part of the next step in the evolution of ADAS is to incorporate information from other offsite sensors or obtain control inputs from infrastructure which can coordinate multiple vehicles simultaneously via a wireless interface. Wireless communication is inherently delayed and prone to dropped packets. This study looks at the effect of transport latencies and dropped packets on an off-site autoregressive steering controller supplying direct steering inputs to a vehicle. A fully non-linear vehicle simulation model is used to test the effect of delaying steering inputs and dropped packets to test the stability of the controller. The study shows that at dropped packet percentages of up to 40% adequate vehicle control is maintained, while transport latencies of up to 100 ms allow for moderately accurate vehicle control.


    Access

    Access via TIB


    Export, share and cite




    Driver/vehicle steering response latencies

    Summala,H. / Univ.of Helsinki,Dep.of Gen.Psychol.,FI | Automotive engineering | 1981


    AIR-DROPPED UNDERWATER VEHICLE

    WANG SHUXIN / WANG YANHUI / YANG SHAOQIONG et al. | European Patent Office | 2022

    Free access

    SYSTEM FOR OFFSITE NAVIGATION

    GUPTA SOUMYA / PANG JOHN Z / KONCHENKO ANDREY et al. | European Patent Office | 2023

    Free access

    SYSTEM FOR OFFSITE NAVIGATION

    GUPTA SOUMYA / PANG JOHN Z / KONCHENKO ANDREY et al. | European Patent Office | 2023

    Free access