In electric vehicles (EVs) and hybrid EVs, energy efficiency is essential where the energy storage is limited. Adding to its high stability and low cost, the induction motor efficiency improves with loss minimisation. Also, it can consume more power than the actual need to perform its working when it is operating in less than full load condition. This study proposes a control strategy based on the fuzzy logic control (FLC) for EV applications. FLC controller can improve the starting current amplitude and saves more power. Through the MATLAB/SIMULINK software package, the performance of this control was verified through simulation. As compared with the conventional proportional integral derivative controller, the simulation schemes show good, high-performance results in time-domain response and rapid rejection of system-affected disturbance. Therefore, the core losses of the induction motor are greatly reduced, and in this way improves the efficiency of the driving system. Finally, the suggested control system is validated by the experimental results obtained in the authors’ laboratory, which are in good agreement with the simulation results.
Power optimisation scheme of induction motor using FLC for electric vehicle
IET Electrical Systems in Transportation ; 10 , 3 ; 301-309
2020-07-21
9 pages
Article (Journal)
Electronic Resource
English
induction motors , starting current amplitude , energy storage , time-domain response , conventional proportional integral derivative controller , power optimisation scheme , electric vehicles , fuzzy logic control , electric vehicle , FLC controller , energy efficiency , loss minimisation , load condition , PI control , system-affected disturbance , machine control , core losses , fuzzy control , induction motor efficiency , simulation schemes , three-term control , hybrid EVs , high-performance results
Metadata by IET is licensed under CC BY 3.0
Power optimisation scheme of induction motor using FLC for electric vehicle
Wiley | 2020
|Improved design for electric vehicle induction motors using an optimisation procedure
Tema Archive | 1996
|