Pedestrians are the most vulnerable urban traffic participants. In order to better protect them in pre-crash scenarios, it is necessary to detect them. Unfortunately, pedestrian detection is very difficult in highly cluttered urban scenarios, using cameras mounted on moving vehicle. A novel approach to walking pedestrian detection, using dense stereo vision systems, is presented. Multiple features combined into a Bayesian framework are used to yield a high rate of pedestrian detection. The feature set includes simple features such as width, height, lateral and longitudinal speed. It also includes complex motion features, such as the variance of the motion field caused by the pedestrians' legs and arms moving during walking and the periodicity of the pedestrians' walking pattern.
Multi-feature walking pedestrians detection for driving assistance systems
IET Intelligent Transport Systems ; 2 , 2 ; 92-104
2008-06-01
13 pages
Article (Journal)
Electronic Resource
English
Multi-feature walking pedestrians detection for driving assistance systems
British Library Conference Proceedings | 2008
|PART 1 - PEDESTRIANS - Drivers' Perception of Pedestrians' Rights and Walking Environments
Online Contents | 2004
|Driving Assistance: Pedestrians and Bicycles Accident Risk Estimation using Onboard Front Camera
Springer Verlag | 2022
|Real world walking speeds of young pedestrians
Automotive engineering | 2001
|