This paper investigates the problem of ground vehicle tracking with ground-moving target indicator (GMTI) radar. In practice, the movement of ground vehicles may involve several different maneuvering types (acceleration, deceleration, standstill, etc.). Consequently, the GMTI radar may lose measurements when the radial velocity of the ground vehicle is below a threshold, i.e., falling into the Doppler blind region. In this paper, to incorporate the information gathered from normal measurements and knowledge on the Doppler blindness constraint, we develop an enhanced particle filtering method for which the importance distributions are inspired by a recent noise-related Doppler blind (NRDB) filtering algorithm for GMTI tracking. Specifically, when constructing the importance distributions, the proposed particle filter takes the advantages of the efficient NRDB algorithm by applying the extended Kalman filter and its generalization for interval-censored measurements. In addition, the linearization and Gaussian approximations in the NRDB algorithm are corrected by the weighting process of the developed filtering method to achieve a more accurate GMTI tracking performance. The simulation results show that the proposed method substantially outperforms the existing methods for the GMTI tracking problem.


    Access

    Download


    Export, share and cite



    Title :

    An enhanced particle filtering method for GMTI radar tracking


    Contributors:
    Miao Yu (author) / Cunjia Liu (author) / Baibing Li (author) / Wen-Hua Chen (author)


    Publication date :

    2016-06-01


    Size :

    1403084 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    An unscented particle filter for GMTI tracking

    Payne, O. / Marrs, A. | IEEE | 2004


    GMTI Radar for AV Applications

    Trimmer, B. / Lincoln-Jones, C. | British Library Conference Proceedings | 2003


    6.0301 An Unscented Particle Filter for GMTI Tracking

    IEEE | British Library Conference Proceedings | 2004


    A Variable Structure Multiple Model Particle Filter for GMTI Tracking

    Arulampalam, M. S. / Gordon, N. J. / Orton, M. et al. | British Library Conference Proceedings | 2002