Inter-vehicle communication for autonomous vehicles (AVs) stands to provide significant benefits in terms of perception robustness. We propose a novel approach for AVs to communicate perceptual observations, tempered by trust modelling of peers providing reports. Based on the accuracy of reported object detections as verified locally, communicated messages can be fused to augment perception performance beyond line of sight and at great distance from the ego vehicle. Also presented is a new synthetic dataset which can be used to test cooperative perception. The TruPercept dataset includes unreliable and malicious behaviour scenarios to experiment with some challenges cooperative perception introduces. The TruPercept runtime and evaluation framework allows modular component replacement to facilitate ablation studies as well as the creation of new trust scenarios we are able to show.
TruPercept: Trust Modelling for Autonomous Vehicle Cooperative Perception from Synthetic Data
2020-10-19
1071440 byte
Conference paper
Electronic Resource
English
TRUPERCEPT: TRUST MODELLING FOR AUTONOMOUS VEHICLE COOPERATIVE PERCEPTION FROM SYNTHETIC DATA
British Library Conference Proceedings | 2020
|SECURITY CONCEPT WITH DISTRIBUTED TRUST-LEVELS FOR AUTONOMOUS COOPERATIVE VEHICLE NETWORKS
British Library Conference Proceedings | 2021
|Security Concept with Distributed Trust-Levels for Autonomous Cooperative Vehicle Networks
BASE | 2021
|