This work proposes a spatially-conditioned neural network to perform semantic segmentation and geometric scene completion in 3D on real-world LiDAR data. Spatially-conditioned scene segmentation (SCSSnet) is a representation suitable to encode properties of large 3D scenes at high resolution. A novel sampling strategy encodes free space information from LiDAR scans explicitly and is both simple and effective. We avoid the need for synthetically generated or volumetric ground truth data and are able to train and evaluate our method on semantically annotated LiDAR scans from the Semantic KITTI dataset. Ultimately, our method is able to predict scene geometry as well as a diverse set of semantic classes over a large spatial extent at arbitrary output resolution instead of a fixed discretization of space. Our experiments confirm that the learned scene representation is versatile and powerful and can be used for multiple downstream tasks. We perform point-wise semantic segmentation, point-of-view depth completion and ground plane segmentation. The semantic segmentation performance of our method surpasses the state of the art by a significant margin of 7% mIoU.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    SCSSnet: Learning Spatially-Conditioned Scene Segmentation on LiDAR Point Clouds


    Contributors:


    Publication date :

    2020-10-19


    Size :

    2274760 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Efficient Segmentation of 3D LIDAR Point Clouds Handling Partial Occlusion

    Aue, J. / Langer, D. / Mueller-Bessler, B. et al. | British Library Conference Proceedings | 2011


    Efficient segmentation of 3D LIDAR point clouds handling partial occlusion

    Aue, Jan / Langer, D. / Muller-Bessler, B. et al. | IEEE | 2011


    Road Markings Segmentation from LIDAR Point Clouds using Reflectivity Information

    Certad, Novel / Morales-Alvarez, Walter / Olaverri-Monreal, Cristina | IEEE | 2022


    Patch-Based Semantic Labeling of Road Scene Using Colorized Mobile LiDAR Point Clouds

    Luo, Huan / Wang, Cheng / Wen, Chenglu et al. | IEEE | 2016