A new robust adaptive processor based on reiterative application of the median cascaded canceler (MCC) is presented and called the reiterative median cascaded canceler (RMCC). It is shown that the RMCC processor is a robust replacement for the sample matrix inversion (SMI) adaptive processor and for its equivalent implementations. The MCC, though a robust adaptive processor, has a convergence rate that is dependent on the rank of the input interference-plus-noise covariance matrix for a given number of adaptive degrees of freedom (DOF), N. In contrast, the RMCC, using identical training data as the MCC, exhibits the highly desirable combination of: 1) convergence-robustness to outliers/targets in adaptive weight training data, like the MCC, and 2) fast convergence performance that is independent of the input interference-plus-noise covariance matrix, unlike the MCC. For a number of representative examples, the RMCC is shown to converge using ~ 2.8N samples for any interference rank value as compared with ~ 2N samples for the SMI algorithm. However, the SMI algorithm requires considerably more samples to converge in the presence of outliers/targets, whereas the RMCC does not. Both simulated data as well as measured airborne radar data from the multichannel airborne radar measurements (MCARM) space-time adaptive processing (STAP) database are used to illustrate performance improvements over SMI methods.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Reiterative median cascaded canceler for robust adaptive array processing


    Contributors:


    Publication date :

    2007-04-01


    Size :

    3781843 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English