Precisely modeling interactions and accurately predicting trajectories of surrounding vehicles are essential to the decision-making and path-planning of intelligent vehicles. This paper proposes a novel framework based on ensemble learning to improve the performance of trajectory predictions in interactive scenarios. The framework is termed Interactive Ensemble Trajectory Predictor (IETP). IETP assembles interaction-aware trajectory predictors as base learners to build an ensemble learner. Firstly, each base learner in IETP observes historical trajectories of vehicles in the scene. Then each base learner handles interactions between vehicles to predict trajectories. Finally, an ensemble learner is built to predict trajectories by applying two ensemble strategies on the predictions from all base learners. Predictions generated by the ensemble learner are final outputs of IETP. In this study, three experiments using different data are conducted based on the NGSIM dataset. Experimental results show that IETP improves the predicting accuracy and decreases the variance of errors compared to base learners. In addition, IETP exceeds baseline models with 50% of the training data, indicating that IETP is data-efficient. Moreover, the implementation of IETP is publicly available at https://github.com/BIT-Jack/IETP.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An Ensemble Learning Framework for Vehicle Trajectory Prediction in Interactive Scenarios


    Contributors:
    Li, Zirui (author) / Lin, Yunlong (author) / Gong, Cheng (author) / Wang, Xinwei (author) / Liu, Qi (author) / Gong, Jianwei (author) / Lu, Chao (author)


    Publication date :

    2022-06-05


    Size :

    913735 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Interpretable Goal-Based model for Vehicle Trajectory Prediction in Interactive Scenarios

    Ghoul, Amina / Yahiaoui, Itheri / Verroust-Blondet, Anne et al. | IEEE | 2023


    Adjacent vehicle interactive trajectory prediction method

    ZHAO WANZHONG / QU MENGYUE / ZHOU XIAOCHUAN et al. | European Patent Office | 2023

    Free access

    Utilizing Hybrid Trajectory Prediction Models to Recognize Highly Interactive Traffic Scenarios

    Zipfl, Maximilian / Spickermann, Sven / Zollner, J. Marius | IEEE | 2023


    Utilizing Hybrid Trajectory Prediction Models to Recognize Highly Interactive Traffic Scenarios

    Zipfl, Maximilian / Spickermann, Sven / Zöllner, J. Marius | ArXiv | 2023

    Free access

    A cognition‐inspired trajectory prediction method for vehicles in interactive scenarios

    Xie, Shanshan / Li, Jiachen / Wang, Jianqiang | Wiley | 2023

    Free access