Decomposition by extrema is put into the context of linear vision systems and scale-space. One dimensional discrete M- and N-sieves neither introduce new edges as the scale increases nor create new extrema. They share this property with diffusion based filters. Furthermore M- and N-sieve algorithms are extremely fast with order complexity n. Used to decompose an image, the resulting granularity is appropriate for pattern recognition.<>


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Scale-space from nonlinear filters


    Contributors:
    Bangham, J.A. (author) / Ling, P. (author) / Harvey, R. (author)


    Publication date :

    1995-01-01


    Size :

    588918 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Scale-Space from Nonlinear Filters

    Bangham, J. A. / Ling, P. / Harvey, R. et al. | British Library Conference Proceedings | 1995


    Regularization, Scale-Space and Edge Detection Filters

    Nielsen, M. / Florack, L. / Deriche, R. | British Library Online Contents | 1997


    Nonlinear scale-space

    Florack, L. M. J. / Salden, A. H. / Ter Haar Romeny, B. M. et al. | British Library Online Contents | 1995


    Autonomous Space Navigation Using Nonlinear Filters with MEMS Technology

    Pourtakdoust, Seid H. / Kiani, Maryam | Wiley | 2017


    Marginalized particle filters for mixed linear/nonlinear state-space models

    Schon, T. / Gustafsson, F. / Nordlund, P.J. | Tema Archive | 2005