The estimation of millimeter-wave (mmWave) massive multiple input multiple output (MIMO) channels becomes compelling when one-bit analog-to-digital converters (ADCs) are utilized. Furthermore, as the number of antenna increases, pilot overhead scales up to provide consistent channel estimation, eventually degrading spectral efficiency. This study presents a channel estimation approach that combines a conditional generative adversarial network (cGAN) with a novel blind denoising network with a sparse feature attention mechanism. Performance analysis and simulations show that using a cGAN fused with a feature attention-based denoising neural network significantly enhances the channel estimation performance while requiring less pilot transmission.
RIDNet Assisted cGAN Based Channel Estimation for One-Bit ADC mmWave MIMO Systems
2023-06-01
2401627 byte
Conference paper
Electronic Resource
English