The accurate and robust prediction of vessel traffic flow is gaining importance in maritime intelligent transportation system (ITS), such as vessel traffic services, maritime spatial planning, and traffic safety management, etc. To achieve fine-grained vessel traffic flow prediction, we will first generate the maritime traffic network (which is essentially a graph), and then propose a graph-driven neural network. In particular, to represent various correlations among spatio-temporal vessel traffic flow, we tend to extract the feature points (i.e., starting, way and ending points) by utilizing the knowledge of vessel positioning data. These feature points are essentially related to the geometrical structures of massive vessel trajectories collected from massive automatic identification system (AIS) records, contributing to the generation of maritime traffic network. We then propose a spatio-temporal multi-graph convolutional network (STMGCN)-based vessel traffic flow prediction method by exploiting multiple types of inherent correlations in the generated maritime graph. The proposed STMGCN mainly contains one spatial multi-graph convolutional layer and two temporal gated convolutional layers, beneficial for extracting spatial and temporal traffic flow patterns. The main benefit of our graph-driven prediction method is that it takes full advantage of the maritime graph and multi-graph learning. Comprehensive experiments have been implemented on realistic AIS dataset to compare our method with several state-of-the-art prediction methods. The fine-grained prediction results have demonstrated our superior performance in terms of both accuracy and robustness.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fine-Grained Vessel Traffic Flow Prediction With a Spatio-Temporal Multigraph Convolutional Network


    Contributors:
    Liang, Maohan (author) / Liu, Ryan Wen (author) / Zhan, Yang (author) / Li, Huanhuan (author) / Zhu, Fenghua (author) / Wang, Fei-Yue (author)

    Published in:

    Publication date :

    2022-12-01


    Size :

    7528313 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Deep Spatio-Temporal Convolutional Neural Network for City Traffic Flow Prediction

    Zhou, Zhiyuan / Qin, Yanjun / Luo, Haiyong | IEEE | 2021




    Spatio-Temporal AutoEncoder for Traffic Flow Prediction

    Liu, Mingzhe / Zhu, Tongyu / Ye, Junchen et al. | IEEE | 2023


    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Haoran Sun / Yanling Wei / Xueliang Huang et al. | DOAJ | 2023

    Free access