Low-earth-orbit satellite constellations with hundreds to thousands of satellites are emerging as practical alternatives for providing various types of data services such as global networking and large-scale sensing. The network performance of these satellite constellations is strongly dependent on the topology of the inter-satellite links (ISLs) in such systems. This paper studies the effects of six different ISL topologies, coupled with three configurations of ground relay terminals, on path failure rate, path latency, and link transmission efficiency in an example highly-inclined Walker Delta constellation with 360 satellites. These network performance parameters are calculated in the presence of satellite failures in the constellation. Trade-offs between ISL connection density and overall performance are examined and quantified. Topologies with 4 active ISLs per satellite are shown to perform significantly better than topologies requiring fewer, especially as the average number of active ISLs per satellite becomes significantly less than three. Latencies for a topology requiring 3 active ISLs per satellite are shown to be between 15 and 60 % higher than for a 4- ISL reference topology. Path availabilities for the 3- ISL topology are shown to be on the order of 30 % lower for a benchmark case of 10 satellite failures. The performance of near-minimal topologies (e.g., an average of 2.2 active ISLs per satellite) is much worse. Latency reductions of 10-30% and path failure rate improvements on the order of 45 % are shown to be obtainable by the inclusion of 2 to 5 strategically located ground relay stations. 11DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Defense Advanced Research Projects Agency under Air Force Contract No. FA8702-15-D-0001. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Network Performance of pLEO Topologies in a High-Inclination Walker Delta Satellite Constellation


    Contributors:


    Publication date :

    2023-03-04


    Size :

    4660715 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Earth Gravity Assisted Inclination Change to Reduce Lunar Constellation Deployment Delta-V

    Koblick, Darin | British Library Conference Proceedings | 2022



    SATELLITE CONSTELLATION SYSTEM AND SATELLITE CONSTELLATION

    MUKAI HISAYUKI | European Patent Office | 2022

    Free access

    DARS Satellite Constellation Performance

    Briskman, Robert / Sharma, S. Paul | AIAA | 2002