Infrastructure sensors installed at elevated positions offer a broader perception range and encounter fewer occlusions. Integrating both infrastructure and ego-vehicle data through V2X communication, known as vehicle-infrastructure cooperation, has shown considerable advantages in enhancing perception capabilities and addressing corner cases encountered in single-vehicle autonomous driving. However, cooperative perception still faces numerous challenges, including limited communication bandwidth and practical communication interruptions. In this paper, we propose CTCE, a novel framework for cooperative 3D object detection. This framework transmits queries with temporal contexts enhancement, effectively balancing transmission efficiency and performance to accommodate real-world communication conditions. Additionally, we propose a temporal-guided fusion module to further improve performance. The roadside temporal enhancement and vehicle-side spatial-temporal fusion together constitute a multi-level temporal contexts integration mechanism, fully leveraging temporal information to enhance performance. Furthermore, a motion-aware reconstruction module is introduced to recover lost road-side queries due to communication interruptions. Experimental results on V2X-Seq and V2X-Sim datasets demonstrate that CTCE outperforms the baseline QUEST, achieving improvements of 3.8% and 1.3% in mAP, respectively. Experiments under communication interruption conditions validate CTCE's robustness to communication interruptions.
Leveraging Temporal Contexts to Enhance Vehicle-Infrastructure Cooperative Perception
2024-09-24
4855074 byte
Conference paper
Electronic Resource
English
Vehicle charging leveraging telecommunication infrastructure
European Patent Office | 2021
|VEHICLE CHARGING LEVERAGING TELECOMMUNICATION INFRASTRUCTURE
European Patent Office | 2019
|Taylor & Francis Verlag | 2024
|Cooperative Infrastructure-Based Vehicle Positioning
IEEE | 2016
|