Historically, automotive test systems were designed for a single core architecture. This, however, limited the utilization of shared resources. In this paper we present a redesign of an automotive test system that is based on a multi-core architecture and capable of managing mixed-criticality data. As part of the redesign, we implemented a Connectivity Manager (CM) that is in charge of multiplexing several data streams from multiple cores across a shared network. Due to the increased complexity of our system, a more flexible scheduling approach is required. Our solution to this problem is a novel dynamic priority communication scheduling approach that adapts to bandwidth changes on the shared communication network. Through simulations with realistic workloads, we prove the proper functioning of our algorithm with the result that higher critical data streams are favoured over less critical data streams in case of an overloaded system caused by a bottleneck on the CAN bus.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Real-time multiplexing of mixed-criticality data streams for Automotive Multi-Core Test Systems


    Contributors:


    Publication date :

    2017-06-01


    Size :

    565314 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English