In this paper, a real-world problem of the vehicle-type classification for automatic toll collection (ATC) is considered. This problem is very challenging because any loss of accuracy even of the order of 1% quickly turns into a significant economic loss. To deal with such a problem, many companies currently use optical sensors (OSs) and human observers to correct the classification errors. Herein, a novel vehicle classification method is proposed. It consists in regularizing the problem using one camera to obtain vehicle class probabilities using a set of convolutional neural networks (CNNs) and, then, uses the Gradient boosting-based classifier to fuse the continuous class probabilities with the discrete class labels obtained from the OS. The method is evaluated on a real-world dataset collected from the toll collection points of the VINCI Autoroutes French network. The results show that it performs significantly better than the existing ATC system and, hence, will vastly reduce the workload of human operators.
Accurate Classification for Automatic Vehicle-Type Recognition Based on Ensemble Classifiers
IEEE Transactions on Intelligent Transportation Systems ; 21 , 3 ; 1288-1297
2020-03-01
3418882 byte
Article (Journal)
Electronic Resource
English
Statewide Monitoring of Truck Traffic Using Automatic Vehicle Classifiers
Online Contents | 1997
|Provincewide Monitoring of Truck Traffic using Automatic Vehicle Classifiers
British Library Conference Proceedings | 1996
|