Reflective convex mirrors are often used on street corners or as passenger-side mirrors on cars to obtain scene information by reflecting blind spots in the field of view, which can provide safety for pedestrians and drivers on roads, driveways, and alleys that lack of visibility. In recent years, deep learning based scene understanding methods (e.g., semantic segmentation) have been rapidly developed. However, due to gaps in the geometric domain, models trained on normal images are not directly applicable to scenes with convex mirror reflections. In this paper, we propose a novel framework to reduce the domain gap between normal images and convex mirror reflection images. In particular, we geometrically model convex mirrors to obtain a differentiable convex mirror simulation layer, CMSL. With the help of CMSL, we perform adversarial domain adaptation on edges in the input space and semantic boundaries in the output space to reduce the geometric appearance gap between the synthetic and real images. To verify the effectiveness of our algorithm, we construct the first convex mirror reflection scene dataset CMR1K, which contains 268 images with fine annotations. Extensive experimental results show that our algorithm can significantly outperform the baseline and previous methods. For example, our method surpasses the baseline and AdvEnt by 10% and 3% in mIoU, respectively.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unsupervised Domain Adaptation for Semantic Segmentation of Urban Street Scenes Reflected by Convex Mirrors


    Contributors:

    Published in:

    Publication date :

    2022-12-01


    Size :

    4404439 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Real-Time High-Performance Semantic Image Segmentation of Urban Street Scenes

    Dong, Genshun / Yan, Yan / Shen, Chunhua et al. | IEEE | 2021


    Unsupervised Domain Adaptation via Shared Content Representation for Semantic Segmentation

    Hubschneider, Christian / Birkenbach, Marius / Zollner, J. Marius | IEEE | 2021


    Threshold-Adaptive Unsupervised Focal Loss for Domain Adaptation of Semantic Segmentation

    Yan, Weihao / Qian, Yeqiang / Wang, Chunxiang et al. | IEEE | 2023


    Domain-Incremental Semantic Segmentation for Traffic Scenes

    Liu, Yazhou / Chen, Haoqi / Lasang, Pongsak et al. | IEEE | 2025