Railway system is a typical large-scale complex system with interconnected sub-systems which contain numerous components. System reliability is retained through appropriate maintenance measures and cost-effective asset management requires accurate estimation of reliability at the lowest level. However, real-life reliability data at component level of a railway system is not always available in practice, let alone complete. The component lifetime distributions from the manufacturers are often obscured and complicated by the actual usage and working environments. Reliability analysis thus calls for a suitable methodology to estimate a component lifetime under the conditions of a lack of failure data and unknown and/or mixture lifetime distributions. This paper proposes a nonparametric Bayesian approach with a Dirichlet Process Mixture Model (DPMM) to facilitate reliability analysis in a railway system. Simulation results will be given to illustrate the effectiveness of the proposed approach in lifetime estimation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Bayesian nonparametric reliability analysis for a railway system at component level


    Contributors:


    Publication date :

    2013-08-01


    Size :

    306954 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Nonparametric Bayesian Models

    Setoodeh, Peyman / Habibi, Saeid / Haykin, Simon | Wiley | 2022



    Nonparametric Bayesian Image Segmentation

    Orbanz, P. / Buhmann, J. M. | British Library Online Contents | 2008


    A Bayesian Network approach for the reliability analysis of complex railway systems

    Baglietto, Emanuela / Consilvio, Alice / Febbraro, Angela Di et al. | IEEE | 2018


    Bayesian Semi-Nonparametric ARCH Models

    Koop, G. | British Library Online Contents | 1994