Existing methodologies to count vehicles from a road image have depended upon both hand-crafted feature engineering and rule-based algorithms. These require many predefined thresholds to detect and track vehicles. This paper provides a supervised learning methodology that requires no such feature engineering. A deep convolutional neural network was devised to count the number of vehicles on a road segment based solely on video images. The present methodology does not regard an individual vehicle as an object to be detected separately; rather, it collectively counts the number of vehicles as a human would. The test results show that the proposed methodology outperforms existing schemes.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network


    Contributors:


    Publication date :

    2018-05-01


    Size :

    1535578 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Traffic Density Estimation and Traffic Control using Convolutional Neural Network

    Ikiriwatte, A.K. / Perera, D.D.R. / Samarakoon, S.M.M.C. et al. | IEEE | 2019


    Traffic Density Estimation using a Convolutional Neural Network

    Nubert, Julian / Truong, Nicholas Giai / Lim, Abel et al. | ArXiv | 2018

    Free access

    Density Based Traffic Control System with Convolutional Neural Network

    Saple Mrunali R. / Jadhav Tejaswini M. / Kode Saurabh Y. et al. | DOAJ | 2022

    Free access

    Robust Traffic Signs Classification using Deep Convolutional Neural Network

    Kherraki, Amine / Maqbool, Muaz / Ouazzani, Rajae El | IEEE | 2022