A variational Bayesian framework is employed in the paper for image segmentation using color clustering. A Gaussian mixture model is used to represent color distributions. Variational expectation-maximization (VEM) algorithm takes into account the uncertainty in the parameter estimation ensuring a lower bound on the approximation error. In the variational Bayesian approach we integrate over distributions of parameters. The processing task in this case consists of estimating the hyperparameters of these distributions. We propose a maximum log-likelihood initialization approach for the variational expectation-maximization (VEM) algorithm. The proposed algorithm is applied to image segmentation using color clustering when representing the images in the L*u*v color coordinate system.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Variational segmentation of color images


    Contributors:
    Nasios, N. (author) / Bors, A.G. (author)


    Publication date :

    2005-01-01


    Size :

    205676 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Variational Segmentation of Color Images

    Nasios, N. / Bors, A. G. | British Library Conference Proceedings | 2005


    Variational segmentation of multi-channel MRI images

    Pien, H.H. / Gauch, J.M. | IEEE | 1994


    Variational Segmentation of Multi-Channel MRI Images

    Pien, H. H. / Gauch, J. M. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Variational Restoration and Edge Detection for Color Images

    Brook, A. / Kimmel, R. / Sochen, N. A. | British Library Online Contents | 2003


    Segmentation-based lossless compression for color images

    Serrano, C. / Acha, B. / Rangayyan, R.M. | IEEE | 1999