We combine complementary features based on foreground and background information in an HMM-based classifier to recognize handwritten digits. A zoning scheme based on column and row models provides a way of dividing the digit into zones without making the features size variant. This strategy allows us to avoid the digit normalization, while it provides a way of having information from specific zones of the digit. Recognition rates around 98% have been achieved using 60,000 digit samples of the NIST SD19 database.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Complementary features combined in an HMM-based system to recognize handwritten digits


    Contributors:


    Publication date :

    2003-01-01


    Size :

    252559 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Complementary Features Combined in an HMM-Based System to Recognize Handwritten Digits

    Britto, A. / Sabourin, R. / Bortolozzi, F. et al. | British Library Conference Proceedings | 2003


    Handwritten Digits Parameterisation for HMM Based Recognition

    Travieso, C. M. / Morales, C. R. / Alonso, I. G. et al. | British Library Conference Proceedings | 1999



    A Novel Approach to Separate Handwritten Connected Digits

    Alhajj, R. / Elnagar, A. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2003


    Segmentation and Recognition of Handwritten Digits with the Use of Precedent-Based Models

    Bogomolov, V. P. / Vinogradov, A. P. / Voronchikhin, V. A. et al. | British Library Online Contents | 1998