Direction-of-arrival (DOA) estimation in unknown noise environments is an important but challenging problem. Several methods based on maximum likelihood (ML) criteria and parameterization of signals or noise covariances have been established. Generally, to obtain the exact ML (EML) solutions, the DOAs must be jointly estimated along with other noise or signal parameters by optimizing a complicated nonlinear function over a high-dimensional problem space. Although the computation complexity can be reduced via derivation of suboptimal approximate ML (AML) functions using large sample assumption or least square criteria, nevertheless the AML estimators still require multi-dimensional search and the accuracy is lost to some extent. A particle swarm optimization (PSO) based solution is proposed here to compute the EML functions and explore the potential superior performances. A key characteristic of PSO is that the algorithm itself is highly robust yet remarkably simple to implement, while processing similar capabilities as other evolutionary algorithms such as the genetic algorithm (GA). Simulation results confirm the advantage of paring PSO with EML, and the PSO-EML estimator is shown to significantly outperform AML-based techniques in various scenarios at less computational costs.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Maximum likelihood DOA estimation in unknown colored noise fields


    Contributors:
    Minghui Li, (author) / Yilong Lu, (author)


    Publication date :

    2008-07-01


    Size :

    1481827 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    MAXIMUM-LIKELIHOOD GPS PARAMETER ESTIMATION

    Progri, I. F. / Bromberg, M. C. / Michalson, W. R. | British Library Online Contents | 2005


    Maximum-Likelihood Parameter-Estimation Algorithm

    Eldred, D. B. / Hamidi, M. / Rodriguez, G. | NTRS | 1986


    Maximum Likelihood Identification of Glint Noise

    Wu, W.-R. | Online Contents | 1996