The remaining useful lifetime (RUL) and state of charge (SoC) of rechargeable lithium-ion batteries (LIBs) are two integral parts to ensure LIBs working reliably and safely for transportation electrification systems. The two together reflect the state of a battery in use. However, existing capacity estimation approaches focus on separately modeling one of them, and no one has proposed a unified estimation model that is applicable to both RUL and SoC estimation yet. In this article, we propose a unified deep learning method that can be implemented for both RUL and SoC estimation. The proposed method leverages long short-term memory recurrent neural networks to achieve state-of-the-art accurate capacity estimation for LIBs under complex operating conditions. Notably, the unified method can perform not only one-step-ahead prediction but also multistep-ahead estimation with high accuracy, achieving RUL estimation error within ten cycles and SoC estimation error within 0.13%. Experimental data collected from battery testing systems with simulated complex operating conditions are used to train the method. A series of comparative experiments are conducted to compare our method with other existing methods. The experimental results show that our method can increase estimation accuracy and robustness for LIBs estimation problems via capturing the long-term dependencies among battery degradation data.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Data-Driven Estimation of Remaining Useful Lifetime and State of Charge for Lithium-Ion Battery


    Contributors:
    Du, Zhekai (author) / Zuo, Lin (author) / Li, Jingjing (author) / Liu, Yu (author) / Shen, Heng Tao (author)


    Publication date :

    2022-03-01


    Size :

    3214600 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Remaining battery charge estimation system and remaining battery charge estimation method

    TAKATSUKA HIROMASA / KASAI KAZUKI | European Patent Office | 2020

    Free access

    Data-Driven Remaining Useful Life Estimation Using Gaussian Mixture Models

    Liu, Yixuan / Hu, Zhen / Todd, Michael et al. | AIAA | 2021


    Remaining Useful Life Prediction of Lithium-ion Battery Based on Data-Driven and Multi-Model Fusion

    Fan, Longyu / Xu, Qizhen / Lu, Xin et al. | SAE Technical Papers | 2022


    Remaining Useful Life Prediction of Lithium-ion Battery Based on Data-Driven and Multi-Model Fusion

    Fan, Longyu / Lu, Xin / Liu, Yuxi et al. | British Library Conference Proceedings | 2022


    Remaining Useful Life Prediction of Lithium-ion Battery Based on Data-Driven and Multi-Model Fusion

    Fan, Longyu / Lu, Xin / Liu, Yuxi et al. | British Library Conference Proceedings | 2022