The concept of a spinning 2-craft Coulomb tether is introduced. Here a physical tether is replaced with an electrostatic force field resulting in an attractive Coulomb force between the 2 craft. The spacecraft charge is assumed to be regulated with an active charge servo system. The open-loop stability of a Coulomb tether with constant spacecraft charges is investigated. The reduced equations of motion for a deep space mission are obtained and linearized to determine eigenvalues of the perturbed motion. This analysis shows that if the plasma Debye length is smaller than the spacecraft separation distance the radial motion is guaranteed to be unstable. For larger Debye lengths the nonlinear radial motion is locally stable. The perturbed out-of-plane motion is shown to always be stable regardless of Debye length. Further, open-loop charge solutions are obtained to perform reconfiguration where the circular orbit radius is changed to a new value. This maneuver is related to the classical Hohmann transfer orbit between circular orbits. However, in the Coulomb tether concept the reconfiguration is achieved by varying the effective gravitational parameter through spacecraft charge changes.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Stability and Reconfiguration Analysis of a Circularly Spinning 2-Craft Coulomb Tether


    Contributors:
    Schaub, H. (author) / Hussein, I. (author)


    Publication date :

    2007-03-01


    Size :

    10416975 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English





    Reconfiguration of a Nadir-Pointing 2-Craft Coulomb Tether

    Natarajan, Arun | Online Contents | 2007


    Reconfiguration of a 2-Craft Coulomb Tether (AAS 06-229)

    Natarajan, A. / Schaub, H. / Parker, G. G. et al. | British Library Conference Proceedings | 2006


    Orbit-nadir aligned coulomb tether reconfiguration analysis

    Natarajan, Arun / Schaub, Hanspeter | Springer Verlag | 2008